Path Integrals for Stochastic Neurodynamics Path Integrals for Stochastic Neurodynamics

نویسندگان

  • Toru Ohira
  • Jack D. Cowan
چکیده

We present here a method for the study of stochastic neurodynamics in the framework of the "Neural Network Master Equation" proposed by Cowan. We consider a model neural network composed of two{state neurons subject to simple stochastic kinetics. We introduce a method based on a spin choerent state path integral to compute the moment generating function of such a network. A formal construction of the path integral is presented and the general expression for many neuron networks is obtained. We show explicitly that the method enables us to obtain the exact moment generating function for a single neuron case. Possible directions for the analysis of many neuron networks as well as an alternative path integral formulation are discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The using of Haar wavelets for the expansion of fractional stochastic integrals

Abstract: In this paper, an efficient method based on Haar wavelets is proposed for solving fractional stochastic integrals with Hurst parameter. Properties of Haar wavelets are described. Also, the error analysis of the proposed method is investigated. Some numerical examples are provided to illustrate the computational efficiency and accuracy of the method.  

متن کامل

A TREE APPROACH TO p-VARIATION AND TO INTEGRATION BY JEAN PICARD

We consider a real-valued path; it is possible to associate a tree to this path, and we explore the relations between the tree, the properties of p-variation of the path, and integration with respect to the path. In particular, the fractal dimension of the tree is estimated from the variations of the path, and Young integrals with respect to the path, as well as integrals from the rough paths t...

متن کامل

A tree approach to p-variation and to integration

We consider a real-valued path; it is possible to associate a tree to this path, and we explore the relations between the tree, the properties of p-variation of the path, and integration with respect to the path. In particular, the fractal dimension of the tree is estimated from the variations of the path, and Young integrals with respect to the path, as well as integrals from the rough paths t...

متن کامل

Small time path behavior of double stochastic integrals and applications to stochastic control

We study the small time path behavior of double stochastic integrals of the form ∫ t 0 ( ∫ r 0 b(u)dW (u)) dW (r), where W is a d-dimensional Brownian motion and b an integrable progressively measurable stochastic process taking values in the set of d× dmatrices. We prove a law of the iterated logarithm that holds for all bounded progressively measurable b and give additional results under cont...

متن کامل

Numerical solution and simulation of random differential equations with Wiener and compound Poisson Processes

Ordinary differential equations(ODEs) with stochastic processes in their vector field, have lots of applications in science and engineering. The main purpose of this article is to investigate the numerical methods for ODEs with Wiener and Compound Poisson processes in more than one dimension. Ordinary differential equations with Ito diffusion which is a solution of an Ito stochastic differentia...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1994